Probabilistic self-organizing maps for qualitative data

نویسنده

  • Ezequiel López-Rubio
چکیده

We present a self-organizing map model to study qualitative data (also called categorical data). It is based on a probabilistic framework which does not assume any prespecified distribution of the input data. Stochastic approximation theory is used to develop a learning rule that builds an approximation of a discrete distribution on each unit. This way, the internal structure of the input dataset and the correlations between components are revealed without the need of a distance measure among the input values. Experimental results show the capabilities of the model in visualization and unsupervised learning tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Architecture Optimization Model for the Probabilistic Self-organizing Maps

The PRobabilistic Self-Organizing Maps (PRSOM) become more and more interesting in many fields such as: pattern recognition, clustering, classification, speech recognition, data compression, medical diagnosis, etc. The PRSOM give an estimation of the density probability function of the data, which depends on the parameters of the PRSOM, such as the architecture of the network. When we take a ra...

متن کامل

Self-organizing mixture models

We present an expectation-maximization (EM) algorithm that yields topology preserving maps of data based on probabilistic mixture models. Our approach is applicable to any mixture model for which we have a normal EM algorithm. Compared to other mixture model approaches to self-organizing maps, the function our algorithm maximizes has a clear interpretation: it sums data log-likelihood and a pen...

متن کامل

Visual analysis of self-organizing maps

Abstract. In the article, an additional visualization of self-organizing maps (SOM) has been investigated. The main objective of self-organizing maps is data clustering and their graphical presentation. Opportunities of SOM visualization in four systems (NeNet, SOM-Toolbox, Databionic ESOM and Viscovery SOMine) have been investigated. Each system has its additional tools for visualizing SOM. A ...

متن کامل

Green Product Consumers Segmentation Using Self-Organizing Maps in Iran

This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...

متن کامل

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 23 10  شماره 

صفحات  -

تاریخ انتشار 2010